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2.3 Opis Celów Naukowych i Wyników Obecnych Publikacji

1. Wstęp

Hydrodynamika relatywistyczna jest uogólnieniem klasycznej hydrodynamiki do kowariant-
nej opisu relatywistycznego. W astrofizyce należy uwzględnić efekty nienaładowanej czasoprzestrzeni;
jednak w kontekście zderzeń ciężkich jonów wystarczy zastosowanie szczególnej teorii względności.
W tym ostatnim przypadku korekty relatywistyczne są konieczne z powodu szybkiej ekspansji
oraz dużej różnicy w prędkościach względnych między różnymi częściami płynu. Dla ogólnego
przeglądu zobacz Ref. [1].

W fizyce cząstek, prognozy dla eksperymentów zazwyczaj uzyskiwane są z formalizmu macierzy
S. To znaczy, odpowiednio zrenormalizowana wartość oczekiwana próżni dla ciągów pól czasowo
uporządkowanych, odpowiednio splecione funkcjami falowymi stanów asymptotycznych początkowych
i końcowych. Choć formalizm ten odniósł sukces w innych sytuacjach, jest zbyt skomplikowany do
zastosowania do opisu zderzeń ciężkich jonów. Główne komplikacje to aspekty nieperturbacyjne
silnego odziaływanie oraz bardzo duża liczba stopni swobody, które należy uwzględnić. Dodatkowe
uproszczenia fenomenologiczne są powszechnie stosowane, a jednym z nich jest, rzeczywiście, hy-
drodynamika relatywistyczna. Jest ona używana do połączenia początkowych etapów zderzenia
z końcowymi. Kilka stopni swobody, mianowicie składniki zachowanych prądów, wystarczają do
rekonstrukcji rozkładu pozycji i pędów cząstek w końcowych etapach, za pomocą wzoru Coopera-
Frye. Nowoczesny przegląd tego opisu można znaleźć również w Ref. [2]. Ewolucja zachowanego
prądu to zupełnie inny temat w porównaniu do macierzy rozpraszania, który można rozwiązać
za pomocą innych narzędzi. Dodatkowe zachowane prądy, takie jak strumień barionowy, mogą
być brane pod uwagę (i były brane pod uwagę), aby uzyskać dokładniejsze prognozy. Jednak ten-
sor energii-pędu Tµν jest zawsze uwzględniany. To znaczy, zachowany prąd lokalnego zachowania
czteropędu ∂µT

µν = 0. Nie wszystkie cząstki (lub pola) niosą ładunki, takie jak barionowy, elek-
tryczny czy inne. Z drugiej strony, wszystkie niosą energię i pęd.

Hydrodynamika płynów doskonałych jest najprostszym założeniem w tym kontekście. To
znaczy, tensor energii-pędu Tµν może być dobrze przybliżony jedynie przez klasyczne stopnie
swobody hydrodynamiczne lub, lepiej, ich relatywistyczne odpowiedniki. To znaczy, zamiast klasy-
cznej prędkości, czteroprędkość uµ: bezwymiarowa, znormalizowana do jedności uµu

µ = 1, wciąż
mająca trzy stopnie swobody, jak w przypadku klasycznym, mimo iż jest czterowektorem. Właś-
ciwa gęstość energii E , która jest uogólnieniem gęstości masy. Ciśnienie P (nie zmienia nazwy)
stanowi piąty stopień swobody w hydrodynamice idealnej. Równania dynamiczne ∂µT

µν = 0 są
tylko cztery. Równanie stanu, łączące ciśnienie z gęstością energii, stanowi ostateczne (zwykłe)
równanie do zamknięcia układu (zamiast równań różniczkowych cząstkowych, jak w równaniach
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zachowania) P = P(E). Główna idea relatywistycznej hydrodynamiki idealnej polega na tym,
że pochodne pojawiają się tylko z równań zachowania, równań ruchu, równolegle do klasycznego
odpowiednika. Czteroprędkość jest jedynym kowariantnym wektorem, który może być użyty do
zbudowania Tµν . Istnieje również tensor rzędu dwa, mianowicie tensor metryki czasoprzestrzeni
szczególnej teorii względności gµν . Wyłączając pochodne, nie ma zbyt wielu kombinacji tych
składników, które mogą tworzyć Tµν . W szczególności tylko jedna z nich daje równanie ciągłości
i równanie Eulera w limicie nierelatywistycznym [3], innymi słowy, w limicie E/c2 ≈ ρm gęstość
masy, i P/c2 ≈ 0. W hydrodynamice płynów doskonałych tensor energii-pędu przyjmuje postać
Tµν = Euµuν − P(gµν − uµuν). Jeśli rozważy się zachowane prądy wektorowe (barionowy, elek-
tryczny itp.), to, stosując te same argumenty co wcześniej, muszą one być gęstością (skalarową)
pomnożoną przez czteroprędkość. Równanie stanu, zazwyczaj zaczerpnięte z mechaniki statysty-
cznej, łączy ciśnienie z gęstościami; właściwa gęstość energii, jak również inne, jeśli są uwzględ-
nione w rozważaniach. W ten sposób liczba równań odpowiada liczbie niewiadomych. Każdy
nowy zachowany prąd wektorowy dodaje jeden stopień swobody i jedno równanie różniczkowe
cząstkowe.

Liczba stopni swobody tensora symetrycznego rzędu dwóch, takiego jak Tµν , wynosi dziesięć.
W ogólności jest o sześć stopni swobody więcej w porównaniu do przybliżenia płynów doskonałych.
Aby być bardziej precyzyjnym, jeśli uznamy, że ciśnienie izotropowe nie musi pokrywać się z
ciśnieniem w równowadze z mechaniki statystycznej, ciśnienie izotropowe jest podzielone na część
idealną (wciąż opisaną przez równanie stanu) oraz korektę ciśnienia objętościowego Π. Korzystając
z definicji czteroprędkości Landaua, to jest znormalizowanej czasoprzestrzennej wartości własnej
tensora fizycznego

uµT
µν = E uν , uµu

µ = 1, (1)

właściwa gęstość energii jest zdefiniowana jako odpowiadająca jej wartość własna, możliwe jest
rozłożenie każdego tensora, w tym Tµν , na część równoległą i prostopadłą względem uµ. Nazy-
wając ∆µν = gµν − uµuν operatorem ortogonalnym, otrzymujemy

Tµν = E uµuν −
(

P + Π
)

∆µν + πµν . (2)

Napięcie ścinające πµν jest częścią ortogonalną względem czteroprędkości, symetryczną i bez
śladu. Podział na ciśnienie hydrostatyczne P, część równowagi, oraz korektę ciśnienia objętoś-
ciowego Π nie ma charakteru geometrycznego, lecz jest dokonany dla wygody. Ciśnienie hy-
drostatyczne samo w sobie nie stanowi dodatkowego stopnia swobody, ponieważ jest w rzeczywis-
tości zdefiniowane przez relacje równowagi w najbardziej ogólnym przypadku. Efektywna tem-
peratura (oraz potencjały chemiczne, jeśli rozważa się zachowane prądy wektorowe) jest tą, która
dałaby fizyczną gęstość energii E(x) (oraz gęstość barionową i elektryczną), gdyby używać rów-
nań równowagi z mechaniki statystycznej. Z efektywnych parametrów intensywnych definiuje się
następnie ciśnienie hydrostatyczne w każdym punkcie czasoprzestrzeni. Ciśnienie hydrostatyczne
P jest zatem funkcją właściwej gęstości energii E (oraz, ewentualnie, innych gęstości rozważanych).
Można rozpoznać w (2) wszystkie składniki przybliżenia płynów doskonałych, które nazywane
są częścią idealną, reszta to część nie-idealna (nazywana również ”korektami dyssypacyjnymi”).
Oczywiście, prawa zachowania są niewystarczające do zapewnienia zamkniętego układu równań.
Jednym ze sposobów postępowania jest założenie, że tylko część idealna przetrwa w równowadze.
W globalnej jednorodnej równowadze, jak w wielkim zespole kanonicznym, gradienty znikają z
powodu niezmienności obrotowej. Dla dowolnych małych odchyleń od równowagi, a więc dowol-
nych małych gradientów, zakłada się, że korekty nie-idealne są liniowe względem gradientów. Na
przykład πµν = 2 η σµν , w którym σµν jest gradientem czteroprędkości w tym samym sektorze
geometrycznym, co πµν , ortogonalnym względem uµ symetrycznym i bez śladu. Ta ekspansja gra-
dientowa może być uogólniona do drugiego rzędu, na przykład w [4] a także inne podejścia mogą
być użyte do wyprowadzenia relatywistycznej hydrodynamiki, na pierwszym i wyższych rzędach.
Z relatywistycznej teorii kinetycznej [5], oraz z analizy strumienia entropii i produkcji entropi [6].
Wszystkie te podejścia zgadzają się co do ogólnej postaci równań hydrodynamiki lepkościowej
drugiego rzędu, ale nie co do wartości współczynników transportowych. Jeśli przyjmie się hy-
drodynamikę lepkościową drugiego rzędu jako etap pośredni w modelach zderzeń ciężkich jonów,
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możliwe jest również przeprowadzenie analizy bayesowskiej na podstawie danych eksperymental-
nych, aby wybrać najbardziej odpowiednie wartości współczynników transportowych, zobacz na
przykład Ref. [7].
Pomimo zgodności danych z przewidywaniami uzyskanymi za pomocą modeli, które uwzględni-
ają ewolucję hydrodynamiczną, pozostaje ważny problem teoretyczny. Wymóg małych gradien-
tów dla stopni swobody hydrodynamicznych (rozszerzenie gradientowe) oraz małych odchyleń od
lokalnej równowagi (podejście entropii) wydaje się być w sprzeczności z wynikami numerycznymi
uzyskanymi z symulacji. Dla szybko rozszerzającego się układu w kierunku podłużnym zarówno
gradienty, jak i korekty ciśnienia podłużnego mają tendencję do bycia dużymi w porównaniu z
wkładem idealnym. Dzieje się tak przez dużą część ewolucji. Z tego powodu naturalnie pojawia
się pytanie, czy hydrodynamikę można uznać za wiarygodną w zderzeniach jonów ciężkich. Pon-
adto, jako pytania pokrewne, można zastanawiać się, jak uogólnić to podejście lub jak wyjaśnić
jego moc predykcyjną mimo dużych gradientów i odchyleń od równowagi. Jednym ze sposobów
rozwiązania problemu było wprowadzenie hydrodynamiki anizotropowej. Podstawową koncepcją
jest deformacja funkcji rozkładu w lokalnej równowadze, aby uwzględnić (przynajmniej część)
nie-idealnych poprawek. Na przykład, nazywając odpowiednio pęd równoległy p⊥ i poprzeczny
p∥ częścią pędu ortogonalną i równoległą względem osi wiązki, rozkład Boltzmanna dla cząsteczek
bezmasowych można zapisać jako

f(x,p) = e− p
T = e

−

√
p2

⊥
T 2 +

p2
∥

T 2 . (3)

Można wprowadzić dwie oddzielne skale pędu, czyniąc rozkład anisotropowym

f(x,p) = e
−

√
p2

⊥
λ2

⊥
+

p2
∥

λ2
∥ . (4)

Jest to, oczywiście, zgodne z lokalnym rozkładem równowagi (w limicie Boltzmanna) dla λ⊥ =
λ∥ = T . W kontekście tzw. symetrii Bjorkena, czyli niezmienności podłużnego boost, homogeniczności
w płaszczyźnie poprzecznej oraz niezmienności odbicia osiowego w kierunku podłużnym, wystar-
czające jest to, aby odtworzyć każdą nie-idealną część tensora energii-pędu dla układu bezma-
sowego. Funkcja rozkładu taka jak (4) zapewnia związek między gęstością energii, ciśnieniem
poprzecznym i podłużnym. Przypomina to przypadek hydrodynamiki płynów doskonałych, z
równaniem stanu łączącym zarówno gęstość energii, jak i ciśnienie z efektywną temperaturą, a
więc łącząc je ze sobą. Mając jedną dodatkową skalę pędu, nawet w przypadku symetrii Bjorkena,
konieczne jest dodanie dodatkowego równania, aby uzyskać rozwiązanie. Początkowo zostało to
zrobione niezależnie przez dwie grupy. W jednym przypadku, korzystając z ansatzu dla produkcji
entropii [8]. W drugim przypadku, stosując zerowy moment równania Boltzmanna [9] w przy-
bliżeniu czasu relaksacji, Relaxation Time Approximation (RTA). W obu przypadkach można
wykazać, że równania ruchu redukują się do hydrodynamiki o lepkości drugiego rzędu w limicie
bliskim równowagi. Jednak podejście to ma jeszcze inną dyskretną zaletę. Redukuje się do ewolucji
swobodnego strumienia (gaz idealny) wielkości hydrodynamicznych w granicy braku oddziaływań
(duży czas relaksacji).
Publikacje związane z osiągnięciami naukowymi poświęcone są uogólnianiu i wyjaśnianiu zachowa-
nia hydrodynamicznego ekstremalnych układów powstających w zderzeniach jonów ciężkich. Za-
czynając od mojego osobistego wkładu w hydrodynamikę anizotropową, a następnie wykraczając
poza tło kinetyczne wymagane w wcześniejszych pracach.
Poniżej przedstawiam wyniki związane z osiągnięciami naukowymi oraz opisuję etapy prowadzące
do ich uzyskania. Szczegóły dotyczące metod oraz dyskusja na temat subtelniejszych kwestii
znajdują się w odpowiednich publikacjach.

2. Hydrodynamika Anizotropowa

Publikacje [H1,H2,H3,H4] stanowią mój główny wkład w tematykę hydrodynamiki anizotropowej
(aHydro). Opracowałem oryginalne argumenty, uogólniłem ansatz dla tła anisotropowego rozkładu
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funkcji i poprawiłem zgodność z tłem kinetycznym, stosując nowe metody do zamknięcia układu
równań aHydro.
W pierwszym artykule [H1] przepracowałem ramy aHydro. Oprócz wygodnego przemianowa-
nia parametrów, co upraszcza ostateczne wzory, zaproponowałem nowy sposób wyciągania do-
datkowego równania ruchu. Zamiast ansatzu dla produkcji entropii, jak w [8], lub używania ze-
rowego momentu równania Boltzmanna, jak w [9], postanowiłem skorzystać z drugiego momentu.
Zaczynając od relatywistycznego równania Boltzmanna

pµ∂µf(x,p) = C[f ], (5)

jego momenty to kowariantne względem Lorentza całki po pędach
∫

p iloczynu czteropędowych
wektorów razy równanie. Tak więc n-ty moment ma postać

∂µ

∫
p
pµpµ1 · · · pµn f =

∫
p
pµ1 · · · pµn C[f ]. (6)

Zerowy moment odpowiada dywergencji wektora liczby cząstek, to znaczy, szybkości produkcji
cząstek, która musi wynosić zero dla zderzeń sprężystych. Pierwszy moment odpowiada lokalnemu
zachowaniu czteropędu. Ten tensor naprężenia-energii w relatywistycznej teorii kinetycznej ma
postać Tµν =

∫
p p

µpνf . Jego dywergencje sumują się do zera dla izolowanego układu, stąd∫
p p

νC = 0. Drugi moment równania Boltzmanna to równanie tensorowe drugiego rzędu.

∂λ

∫
p
pλpµpν f =

∫
p
pµpν C, (7)

Dla wolnych indeksów µ i ν można, kierując się zasadą geometryczną, przyjąć ten sam sektor
geometryczny, co stopnie swobody zmiennych, które nas interesują.
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Figure 1: Ewolucja anizotropii ciśnienia dla masywnego
gazu. Czerwona ciągła linia to rozwiązanie kinetyczne. Cz-
erwona przerywana linia to nowatorskie podejście do aHy-
dro, a niebieska linia kropkowana to starsze podejście.

Mianowicie, dla korekcji ciśnienia
ścinającego πµν , część przestrzenną,
symetryczną i bez śladu. W [H1]
rozważany jest jedynie przypadek
gazu konformalnego (cząstki bez
masy) oraz symetryczne względem
osi i niezmienne względem przyspieszenia
wzdłużnej rozprężenia. Równanie za-
chowuje dodatniość produkcji en-
tropii, odzyskuje limit swobodnego
przepływu w limicie zerowego czasu
relaksacji oraz reprodukuje równania
ruchu hydrodynamiki drugiego rzędu
Israela-Stewarta w limicie małych
odchyleń od lokalnej równowagi.

W publikacji [P4] przetestowal-
iśmy nowy zestaw równań. Osiąg-
nięto istotną poprawę w reprodukcji
anizotropii ciśnienia. Zostało to zre-
alizowane przy użyciu tego samego
czasu relaksacji dla aHydro oraz
dla podstawowej teorii kinetycznej,
w przeciwieństwie do wcześniejszego
podejścia opartego na zerowym mo-
mencie [10].

Na Rysunku 1 znajduje się na-
jbardziej uderzający wykres z publikacji [P4]. Czas początkowy (w układzie Milne’a) oraz efekty-
wna temperatura wynoszą odpowiednio τ0 = 0.5 fm/c i T0 = 600 MeV. Masa cząstki to M = 300
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MeV/c2. Czas relaksacji τeq = 0.5 fm/c jest stałą liczbą, a nie funkcją temperatury, a ξ0 jest
parametrem, który ustala początkową anizotropowość (jak wyjaśniono w [P4]).

Starsze podejście, które było bardzo skuteczne dla cząstek bez masy, w rzeczywistości stanowiło
istotną poprawę w porównaniu do przepisu Israela-Stewarta [10], już nie jest ani jakościowo, ani
ilościowo dobre, podczas gdy nowe podejście dla aHydro bardzo dobrze reprodukuje anizotropowość
ciśnienia.

Korekta ciśnienia objętościowego, jeśli jest mała w porównaniu do naprężeń ścinających, nie
jest reprodukowana poprawnie. Można to łatwo zrozumieć, ponieważ w [P4] nie rozszerzyliśmy
ansatz aHydro o dodatkowy stopień swobody dla korekty ciśnienia objętościowego i, w związku z
tym, nie wprowadziliśmy nowego równania ruchu, które zajmowałoby się jego ewolucją.

Artykuł [H2] stanowi następny logiczny krok. Mianowicie, uogólnienie nowego ansatzu aHydro,
aby uwzględnić wszystkie hydrodynamiczne stopnie swobody. W szczególności, usunięcie wszelkich
upraszczających założeń dotyczących symetrii ekspansji. To znaczy, uwzględnione są wszystkie hy-
drodynamiczne stopnie swobody: gęstość energii i czteroprędkość z hydrodynamiki płynu doskon-
ałego, a także wszystkie składowe naprężeń ścinających πµν oraz korekty ciśnienia objętościowego
Π. Drugi moment równania Boltzmanna może dostarczyć wszystkich niezbędnych równań dla do-
datkowych stopni swobody. W rzeczywistości istnieje więcej niż jedna opcja, aby uzyskać równania
dla objętości. Ogólnie rzecz biorąc, podążając za tym samym geometrycznym przepisem, każda
kombinacja skalarna może dostarczyć równanie dla objętości, a każda symetryczna, przestrzenna
i śladowa kombinacja dla naprężeń ścinających.

W artykule [H3] przeprowadziliśmy testy numeryczne, które dały dość zaskakujące wyniki.
Każda z formuł aHydro lepiej odwzorowuje anizotropię temperatury i ciśnienia niż hydrodynamika
lepkości drugiego rzędu. Było to raczej oczekiwane, zwłaszcza dla większej lepkości (bliżej gazu ide-
alnego niż płynu doskonałego), ponieważ aHydro odwzorowuje limit swobodnego przemieszczania
się. Jednakże, kwantytatywna zgodność przy niskiej lepkości nie jest znacznie lepsza niż w przy-
padku hydrodynamiki lepkości, nawet przy dużych gradientach i korekcjach ciśnienia. Częściowo
wynika to z użycia najnowszego sformułowania hydrodynamiki lepkości drugiego rzędu, wprowad-
zonej w [11]. Ta ostatnia była już znana z lepszego dopasowania do wyników kinetycznych niż
sformułowanie Israel-Stewart, używana do porównań, np. w [10]. Ponadto nowe sformułowanie
hydrodynamiki lepkości drugiego rzędu lepiej odwzorowuje ewolucję objętościową, niezależnie od
sformułowania aHydro. Jest to bardziej zagadkowe, ponieważ aHydro lepiej odwzorowuje korekcje
ciśnienia ścinającego, a ze względu na sprzężenie między naprężeniami ścinającymi a objętoś-
ciowymi, mają one tendencję do bycia ważnymi źródłami ewolucji Π. Dodatkowo sprawdziliśmy,
jak dobrze każda hydrodynamika drugiego rzędu pochodząca z aHydro odwzorowuje wyniki kine-
tyczne. Udowodniłem już w [H2], że nowe formuły aHydro kończą się na hydrodynamice lepkości
drugiego rzędu w granicy blisky równowadze. W ten sposób każda procedura aHydro dostarcza
zbioru współczynników transportowych. Nawet jeśli same współczynniki są bardzo różne, wynika-
jąca z tego preskrypcja hydrodynamiczna dobrze odwzorowuje dane kinetyczne. Gorsza niż aHydro
i najlepsza hydrodynamika lepkości, ale nie o dużą różnicę.

Najwyraźniej pomysł anizotropowej aproksymacji pełnej funkcji rozkładu nie wystarcza, by
uzyskać poprawę w stosunku do hydrodynamiki drugiego rzędu. Korekcje ciśnienia traktowane są
nieliniowo, ale wybór równań jest również kluczowy.

3. Metoda Momentów

Proponowane przeze mnie rozwiązanie, inspirowane podobnymi pracami z zakresu hydrodynamiki
lepkiej (już wspomniane [11] lub, bardziej ogólnie [12]), polega na użyciu metody momentów do
wybrania równań ruchu. Podstawowa idea tej aplikacji metody polega na zachowaniu dokładnych
równań z teorii kinetycznej tak długo, jak to możliwe, przybliżając je dopiero na końcu.
Głównym narzędziem dla tej wersji metody momentów jest manipulowanie równaniem Boltzmanna
w relatywistycznej teorii. Niezależnie od specyficznej formy jądra kolizyjnego oraz szczególnej
definicji czteroprędkości płynu uµ (np. definicja Landaua (1)). Korzystając ze wspólnych notacji
pµ∂µf = p · ∂f oraz uµ∂µf = u · ∂f = ḟ i ∇µf = ∆µν∂µf , możliwe jest zastosowanie następującej
dekompozycji
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p · ∂f = C[f ], ⇒ (p · u)ḟ + p · ∇f = C[f ], ⇒ ḟ = −p · ∇f
(p · u) + C[f ]

(p · u) . (8)

Bardziej ogólnie, w relatywistycznej hydrodynamice powszechnie stosowaną notacją jest używanie
kropki dla pochodnej współrzędnej Ȯµ1···µn = uµ∂µOµ1···µn , a dla gradientu ortogonalnego do
kierunku czteroprędkości używa się symbolu nabla ∇µOµ1···µn = ∆µν∂νOµ1···µn dla dowolnego
tensora Oµ1···µn . Jeśli weźmie się moment tensora funkcji rozkładu (a nie samego równania Boltz-
manna, jak pokazano wcześniej) ∫

p
pµ1 · · · pµnf, (9)

można użyć prawej strony równania (8), aby uzyskać dokładną ewolucję momentu tensora. Jest
to szczególnie interesujące w przypadku zastosowania do samego tensora energii-pęndu

Tµν =
∫

p
pµpνf, ⇒ Ṫµν = −

∫
p

pµpνpα

(p · u) ∇αf +
∫

p
pµpνC[f ]. (10)

Jego projekcja wzdłuż czteroprędkości to po prostu inny sposób zapisania lokalnego zachowanie
czteropędu ∂µT

µν = 0, natomiast projekcja ortogonalna dostarcza sześć dokładnych równań dla
ewolucji w czasie πµν i Π. Korzystając z notacji

fµ1···µs
r = ∆µ1

ν1
· · · ∆µs

νs

∫
p
(p · u)r pν1 · · · pνsf, and O⟨µ⟩··· = ∆µ

ν Cν···, (11)

tensor ciśnienia przyjmuje postać

Pµν =̇ −
(

P + Π
)

∆µν + πµν =
∫

p
p⟨µ⟩p⟨ν⟩f = fµν

0 . (12)

W podobny sposób, odpowiednia gęstość energii przyjmuje postać E = f2. Zatem, biorąc projekcję
ortogonalną prawej strony równania (10), wyciągając pochodne z całki i po wykonaniu kilku przek-
ształceń algebraicznych, otrzymuje się dokładną formułę

Ṗ⟨µ⟩⟨ν⟩ −
∫

p

p⟨µ⟩p⟨ν⟩

(p · u) C[f ] = 2
(

P + Π
)
σµν + 5

3θ
(

P + Π
)

∆µν − 5
3θ π

µν + 2π(µ
α σν)α

− 2π(µ
α ων)α − ∇αf

α⟨µ⟩⟨ν⟩
−1 −

(
σαβ + 1

3θ∆αβ

)
fαβµν
−2 ,

(13)

znak klamrowych nawiasów na pojedynczym indeksie reprezentuje część ortogonalną względem uµ,
to znaczy O⟨µ⟩··· = ∆µ

ν Oν···. Nawiasy wokół wielu indeksów oznaczają ich symetryczną kombinację.
Na przykład O(µν)··· = 1

2 (Oµν··· + Oνµ···).
Usunięcie śladu z równania (13) daje ewolucję czasową korekty ciśnienia ścinającego πµν , podczas
gdy ślad daje ewolucję ciśnienia objętościowego Π.
Jak można od razu zauważyć, większość sprzężeń dla ewolucji tensorów ciśnienia jest związana z
samymi stopniami swobody hydrodynamicznymi, to znaczy, z komponentami Tµν oraz gradientami
czteropędu. Notacja ta jest standardową dekompozycją Landaua stosowaną w hydrodynamice

∂µuν = uµu̇ν + σµν + ωµν + 1
3θ∆

µν , (14)

ponieważ u̇µ to przyspieszenie, a ścinanie σµν jest częścią traceless (pozbawioną śladu), przestrzenną
i symetryczną, wrotność ωµν jest częścią przestrzenną i antysymetryczną, a rozprężenie skalarne
to θ = ∇µu

ν = ∂µu
µ. Jedynym możliwym źródłem sprzężenia z niehydrodynamicznymi stopniami

swobody są: składnik z jądra kolizyjnego C[f ], oraz tensory rzędu trzeciego i czwartego w prawej
stronie równania (13). Jest to dość jasne dla części związanej ze ścinaniem, ale dotyczy to również
części związanej z ciśnieniem masywnym (bulk). W tym ostatnim przypadku, oprócz skłodnika
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Π̇ po lewej stronie, istnieje również Ṗ, a ta pochodna nie pojawia się bezpośrednio w lokalnego
zachowaniu czteropęndu. W związku z tym mogłoby się wydawać, że nie można jej powiązać z
hydrodynamicznymi stopniami swobody oraz gradientami czteropędu, jak to zwykle bywa w hy-
drodynamice. W rzeczywistości, przypominając, że ciśnienie hydrostatyczne nie jest niezależnym
stopniem swobody, ale jest uzyskiwane z równania stanu w równowadze termodynamicznej, można
to zrobić. Właściwa gęstość energii daje efektywną temperaturę, którą można by uzyskać w tym
punkcie, gdyby układ był w globalnej równowadze. Ciśnienie hydrostatyczne P jest następnie
wyciągane z ciśnienia izotropowego, jest to ciśnienie, jakie układ miałby w globalnej równowadze
z temperaturą równą efektywnej temperaturze. Dlatego lokalne P jest funkcją efektywnej temper-
atury, a więc właściwej gęstości energii P(E). Korzystając z definicji relatywistycznej prędkości
dźwięku cs

c2
s = ∂P

∂E
, ⇒ Ṗ = c2

s Ė , (15)

a kontrakcja ∂µT
µν = 0 z uν daje

Ė = −θ
(

E + P + Π
)

+ σµνπ
µν . (16)

W związku z tym, pochodna współrzędnych lokalnych ciśnienia hydrostatycznego dostarcza je-
dynie dodatkowych sprzężeń między hydrodynamicznymi stopniami swobody w równaniu ewolucji
objętościowej.
Jądro kolizyjne samo w sobie zanika w granicy swobodnego strumienia, ale wyższe rzędy tensorów
nie są trywialne. Jedno ze źródeł sprzężeń z nie-hydrodynamicznymi stopniami swobody pozostaje
również w gazie idealnym. Jak szczegółowo wyjaśniono w Ref. [12], wyższe rzędy tensora nie są
całkowicie niezależne od hydrodynamicznych stopni swobody, ale zawierają również prawdziwe
nowe stopnie swobody. W [H4] użyłem przybliżenia aHydro pełnej funkcji rozkładu w wyższych
rzędach tensorów fαµν

−1 i fαβµν
−2 , pod warunkiem, że jądro kolizyjne traktowane jest w Przybliżeniu

Czasu Relaksacji (RTA)

C[f ] = − (p · u)
τeq.

(
f − e− (p·u)

T

)
, (17)

człon kolizyjny zapisuje się jako

∫
p

p⟨µ⟩p⟨ν⟩

(p · u) C[f ] = 1
τeq.

(
Π ∆µν − πµν

)
, (18)

i nie sprzęga się z nienahydrodynamicznymi stopniami swobody. Żadne dalsze przybliżenia nie są
potrzebne. Przybliżenie aHydro wyższych tensorów rang reprodukuje dokładnie ich zależność od
stopni swobody hydrodynamicznych i zapewnia nieliniowe przybliżenie dla pozostałych składników.
W ten sposób zamyka się układ równań dla aHydro. W granicy bliskiej równowadze odzyskuje
drugorzędową hydrodynamikę lepką z współczynnikami transportu z [11], które jak dotąd najlepiej
odwzorowują wyniki teorii kinetycznej w RTA.
Z przeprowadzonych przeze mnie testów numerycznych wynika, że nowa receptura aHydro z [H4]
systematycznie lepiej odwzorowuje wyniki teorii kinetycznej niż najlepsza receptura drugorzędowej
hydrodynamiki lepkiej oraz starsza wersja aHydro. Rzeczywiście, to nowsze przybliżenie aHydro
na wiodącym poziomie jest o wiele bliższe w precyzji do przybliżenia aHydro na poziomie Next to
Leading Order (NLO) lepkiej hydrodynamiki, zaprezentowanego w [13].
Pomimo uderzającego sukcesu, można się zastanowić, dlaczego hydrodynamika tak dobrze odw-
zorowuje wyniki kinetyczne. Bardziej precyzyjnie, wersja z [11] tak robi, w przeciwieństwie do
poprzednich podejść, w których aHydro zapewniało znacznie większą poprawę [10], a nowa wer-
sja [H4] to kolejna znacząca poprawa. Wszystko to, pomimo tego, że w [11] wyraźnie wspomniano
o ekspansji gradientowej i niehydrodynamicznych składnikach rzędu gradientów. Ten paradoks
można wyjaśnić, patrząc na samą metodę momentów, sprzężoną z tłem i ograniczeniami symetrii.
Zarówno [H4], jak i hydrodynamika w [11] stanowią szczególną aplikację metody momentów.
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Przybliżenie czasu relaksacji zapewnia, że składnik kolizyjny po lewej stronie równania (8) jest
odwzorowywany dokładnie w obu przybliżeniach. Rozważana ekspansja (0 + 1)-wymiarowa (tzw.
symetria Bjorkena) tnie tensor trzeciego rzędu po prawej stronie, sposób jego przybliżenia w ogól-
nym przypadku nie ma znaczenia: z powodu symetrii ekspansji w testach numerycznych tensor
ten musi zanikać, jego efekty nie mogą być widoczne w takich testach numerycznych w wymiarze
0 + 1. Pozostaje tensor czwartego rzędu fαβµν

−2 . W obu przypadkach, hydrodynamiki lepkościowej
oraz nowego aHydro, części tego tensora, które zależą od momentów hydrodynamicznych, są re-
produkowane poprawnie. Jedynym przybliżeniem jest reszta. Zgodnie z formalizmem w [12] chodzi
o część nieredukowalną tensora. To właśnie ta część, w której stosowane przybliżenie ma znaczenie
i stanowi źródło różnic między aHydro a hydrodynamiką. W tym momencie można zauważyć, że
duże gradienty nie mają takiego znaczenia w tym formalizmie, ponieważ mnożą zarówno terminy
związane z momentami hydrodynamicznymi, jak i (nieredukowalną część) fαβµν

−2 . W rzeczywis-
tości, duże korekcje nie-idealne w Tµν w porównaniu do fαβµν

−2 mogą oznaczać, że przybliżenie
tego ostatniego jest mniej istotne. Samokompensacja Tµν w ewolucji jego nie-idealnych kompo-
nentów jest większa z tego powodu. Ostatecznie najważniejsze jest to, jak dobrze odwzorowywane
jest całkowite źródło ewolucji, a nie tylko tensor fαβµν

−2 . Dopóki terminy związane z hydrodynam-
icznymi stopniami swobody bezpośrednio się sumują, dla każdego sektora geometrycznego, każde
przybliżenie przy użyciu metody momentów i równań (8) powinno być odpowiednie. W rzeczy-
wistości, jeśli poprawki nie-idealne są duże, gradienty są duże, ale nadal źródła hydrodynamiczne
sumują się bezpośrednio, względny wpływ przybliżeń resztkowych tensorów powinien być mały.
Z drugiej strony, jeśli się one kompensują (jak to ma miejsce częściowo w przypadku objętości),
szczegóły przybliżenia stają się znacznie ważniejsze. Może to wyjaśniać nieoczekiwaną dokład-
ność [11], mimo że pierwotnie była ona traktowana jako przybliżenie małych gradientów, bliskie
płynowi doskonałemu
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Figure 2: Ewolucja anizotropii ciśnienia, realistyczne rów-
nanie stanu [H5].

To oczekiwanie jest dodatkowo
potwierdzone w [H5]. W tej pracy
przekształcamy podejście hydrody-
namiczne z [11], aby uwzględ-
nić efekty realistycznego równania
stanu. Tło zostało zmienione. Zami-
ast prostego gazu, rozważono kwaz-
icząstki o masie zależnej od medium.
Wymagany jest skłodnik bag Bµν ,
który jest dodatkowym składnikiem
w Tµν oprócz składnika kinetycznego
wynikającego z kwazicząstek

Tµν =
∫

p
pµpν f +Bµν . (19)

Skłodnik bag, nawet jeśli można
go uzasadnić z mikroskalowych powodów,
jest potrzebny z praktycznego, fenomeno-
logicznego powodu. W szczególności,
równowagowy ”bag” jest wymagany,
aby dopasować ogólne (kanoniczne)

równanie stanu. Równowagowa gęstość energii Eeq.(T ) i ciśnienie Peq(T ) to dwa stopnie swo-
body, a jedna masa zależna od temperatury m(T ) nie wystarcza, aby dopasować obie jednocześnie.
Częstym wyborem, który przyjmujemy w [H5], jest przyjęcie, że równowagowy ”bag” ma postać
Bµν

eq = B(T )gµν . Rozważania symetrii w homogenicznej globalnej równowadze zabraniają niedi-
agonalnych części równowagowego ”baga” i wymagają izotropowości w przestrzennej części. To
oznacza, że nie wyklucza to dwóch funkcji skalarnych. Dotyczy to niezależnie od zespolu, kanon-
icznego, mikrokannonicznego czy innego. Użycie jednego skalara zależnego od temperatury w
postaci ”baga” jest wygodnym uproszczeniem, ponieważ nie jest wymagane posiadanie dwóch
różnych równowagowych ”bagów” (na tym poziomie) do dopasowania jakiegokolwiek realistycznego
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równania stanu. Nierównowagowa (ogólnie tensorowa) część Bµν wprowadzona jest, ponieważ za-
kładając RTA, użycie przepisu Landaua dla czterowektorów już nie wystarcza, aby zapewnić lokalne
zachowanie czteropędu, jak ma to miejsce w przypadku gazu relatywistycznego (stąd cząstki, a nie
quasi-cząstki). Nierównowagowy ”bag” był już rozważany i używany w kontekście aHydro [14, 15].
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Figure 3: Ewolucja ciśnienia objętościowego z [H5].

Struktura tensorowa, którą wprowadzil-
iśmy, zapewnia, że tło jest wewnętrznie
spójne: rozwiązania dla problemów
wartości początkowych istnieją, a
lokalne zachowanie czteropędu jest
zapewnione przez konstrukcję, a
nie postulowane. Wyniki numeryczne
w ekspansji (1 + 1)-wymiarowej
(bez niezmienniczości na wzrost
wzdłużnej) pokazują, że nawet w
tym przypadku wyniki nowego pode-
jścia do lepkościowej hydrodynamiki
są dość bliskie wynikowi aHydro,
jak pokazano na Rysunkach 2 i 3.
Szczególnie interesująca jest ewolucja
objętościowa na Rysunku 3, dość
bliska aHydro. Anizotropowość ciśnienia
jest już dość bliska wcześniejszej
(prostszej, ale mniej wewnętrznie
spójnej wersji) lepkościowej hydrody-
namiki drugiego rzędu z [11], jak pokazano na Rysunku 2, ale ta wcześniejsza wersja różni się
bardziej dla objętości. Linie na obu rysunkach to odpowiednio: czerwona linia ciągła dla podejś-
cia QaHydro z [14], niebieska linia przerywana dla wcześniejszego modelu lepkościowej hydrody-
namiki z realistycznym równaniem stanu oraz fioletowa linia kropkowana dla tego przedstawionego
w [H5]. Notacja P0 jest używana w [H5], stąd wykres na Rysunku 3, aby reprezentować ciśnienie
hydrostatyczne. Postać P jest używana w literaturze do reprezentowania, oprócz ciśnienia hy-
drostatycznego, ciśnienia izotropowego (hydrostatycznego plus objętościowego), tensora ciśnienia
(Pµν , pisząc jawnie indeksy), i ważne jest, aby określić, która notacja jest używana.

W nowszych badaniach podkreślono, że możliwe jest uniknięcie nierównowagowego baga w przy-
padku tła quasi-cząstowego [16]. Celem tego jest redefinicja efektywnej temperatury, która nie jest
już ustalana przez właściwą gęstość energii ani żaden inny stopień swobody hydrodynamiczny. Z
drugiej strony, podejście, które opracowaliśmy, można rozszerzyć, aby uwzględnić niezerowe gęs-
tości barionowe (równanie stanu w zespole kanonicznym), a może być ono uzyskane jako efektywne
przybliżenie Kwantowej teorii Pola (QFT, Quantum Field Theory), a nie jako deformacja (klasy-
cznej) teorii kinetycznej [P16].

Na tym etapie wydaje się dość jasne, jak systematycznie poprawić rozszerzenie hydrodynam-
iczne wykorzystując metodę momentów. Równanie (13) jest już zasadniczo zapisane w postaci
lepkościowej hydrodynamiki drugiego rzędu. Aproksymując tensory trzeciego i czwartego rzędu
fαµν
−1 oraz fαβµν

−2 (a także składniki z jądra kolizyjnego, w ogólności), uzyskuje się wyższe rzędy
aproksymacji. Następnym krokiem jest rozważenie resztkowego tensora jako zmiennych dynam-
icznych, stosując metodę momentów do ich dokładnej ewolucji, aproksymując nowe tensory, z
którymi są sprzężone, i tak dalej dla wyższych rzędów. Rzeczywiście, zostało to ostatnio zrobione,
zobacz na przykład [17, 18]. Ważne jest jednak, aby podkreślić pewne nieoczekiwane komplikacje
w ramach tej koncepcji. Sytuacja jest dość gładka dla gazu klasycznego. Jeśli jednak rozważy się
przypadek kwantowy lub tło kinetyczne Boltzmanna-Vlasova, ujemne potęgi (p ·u) w fµ1···µ2

−|r| , które
nieuchronnie się pojawiają, stają się problematyczne.

Najbardziej bezpośredni sposób, aby to zobaczyć, to spojrzenie na kwantowy prekursor funkcji
rozkładu W (x, p)

W (x, p) = 2
∫

d4v

(2π)4 e
−ip·v tr

(
ρ̂ ϕ̂†(x+ 1

2v)ϕ̂(x− 1
2v)
)
. (20)

W limicie kinetycznym ta transformacja Fouriera funkcji dwu-punktowej odpowiada klasycznej
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Figure 4: Zbieżność przybliżenia z [H6].

funkcji rozkładu W → 2Θ(p0)δ4(p2 −m2)f(x,p)[19]. Tensor energii i pędu wolnego pola skalarnego
wygląda jak jego klasyczny odpowiednik, z tą jedyną różnicą, że całkowanie odbywa się po d4p dla
momentów off-shell, a nie po Lorentzowsko-kowariantnym (on-shell) całkowaniu momentów. Jak
omówiłem w dodatku do [H8], nie jest skomplikowane znalezienie stanu kwantowego dla wolnego
pola skalarnego, który ma duży wkład w ciśnienie ze strony przestrzennej części W (x, p), p2 < 0.
W tym przypadku, zgeneralizowana wersja fαβµν

−2 z W (x, p) jako wagą, po prostu nie istnieje. Nieza-
leżnie od definicji uµ (dowolny wektor czasowy się nada), (p · u)−2 daje nieskończoną osobliwość,
której nie da się scałkować.

Sytuacja jest inna na powłoce many, stąd w (klasycznej) relatywistycznej teorii kinetycznej.
Nawet dla cząsteczek bezmasowych p2 = 0, o ile w liczniku jest wystarczająco dużo momentów,
kompensują one moment w mianowniku, gdy p → 0. Zawsze ma to miejsce w przypadku prostego
gazu, ale nie w przypadku tła Boltzmanna-Vlasova, na przykład w przypadku mas zależnych od
medium lub plazmy elektromagnetycznej [H6]. W odróżnieniu od pełnego przypadku kwantowego,
niena hydrodynamiczne momenty tensorowe w wiodącym rzędzie są zawsze dobrze zdefiniowane
dla tła Boltzmanna-Vlasova. Jednym ze sposobów postępowania, którego nie można uogólnić na
przypadek kwantowy, jest jednak podążanie za sugestią z [12] i przybliżenie, zasadniczo, fµ1···µs

r

z ujemnym r < 0 serią momentów z dodatnim (a więc zawsze dobrze zdefiniowanym) indeksem.
Jest to mniej wygodne, niż się wydaje, ponieważ konieczne jest użycie wielu takich momentów,
aby uzyskać w miarę dobrą aproksymację niehydrodynamiczne stopni swobody. Jest to prawda już
na początku, aby ustawić poprawne początkowe pochodne zmiennych hydrodynamicznych (zobacz
dodatek D w [H6]). Rozwiązaniem, które opracowaliśmy, jest użycie zresumowanych momentów

Φµ1···µl

1 (ξ, x) =
∫

p
(p · u) pµ1 · · · pµl e−ξ2(p·u)2

f(x, p). (21)

Rozwijając eksponentę w całce, otrzymuje się szereg momentów funkcji rozkładu, zawierających
tylko nieparzyste (i dodatnie) (p · u), stąd nazwa ”zresumowane”. Celem tej metody jest zwięk-
szenie liczby efektywnych wymiarów, a zewnętrzny parametr ξ ma fizyczne wymiary długości.
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W praktyce, biorąc pod uwagę wartości szybki spadek tych momentów dla rosnących |ξ|, tylko
kilka dyskretnych wartości ξ może być uwzględnionych w kodach numerycznych. Zweryfikowal-
iśmy, że dobre dopasowanie modelu tła, już widoczne w hydrodynamice z metody momentów,
jest utrzymywane w tym podejściu i że następuje szybka zbieżność do tła Boltzmanna-Vlasova.
Jest to pokazane na Rysunku 4. Zgodność między przybliżoną temperaturą a anizotropowością
ciśnienia z mikroskalowym tłem jest taka sama, jak już zaobserwowano w zwykłej hydrodynam-
ice (bez pól zewnętrznych). Zgodność jest również dobra dla pola elektrycznego EL (obliczanego
tylko wzdłuż kierunku, stąd L) oraz prądu elektrycznego JL. Linia lmax = 2 odpowiada hydro-
dynamice, w tym sensie, że całkowanie po ξ może być wykonane na poziomie równań i pozostaje
się z równaniami drugiego rzędu hydrodynamiki lepkościowej (sprzężonymi z polem elektromag-
netycznym w fizyce plazmy). Wszystkie składniki Tµν i Jµ zależą tylko od wartości Φµν

1 i Φµ
1 .

W rzeczywistości nie potrzebujemy momentów zależnych od ξ. Wystarczy użyć zależności między
Φ1 a momentami f, aby wszystko zapisać w kategoriach stopni swobody hydrodynamicznych. Dla
lmax = 6, rozważając tensor szóstego rzędu Φµ1···µ6

1 , istnieje zasadniczo pełna zgodność między
przybliżeniem a wynikami Boltzmanna-Vlasova. Nawet gdybym musiał dalej modyfikować wzory
i używać innych przepisów dla momentów, ta koncepcja zresumowanych momentów jest punktem
wyjścia do uogólnienia metody momentów na pełny przypadek kwantowy (off-shell).

4. Kwantowy Przypadek

Większość przedstawionych dotychczas argumentów, czyli hydrodynamika, aHydro oraz Metoda
Momentów, jest ściśle związana z mikroskalowym tłem kinetycznym. Relatywistyczne równanie
Boltzmanna można wyprowadzić jako kowariantne rozszerzenie (klasycznego) równania Boltz-
manna, uwzględniające efekty szczególnej teorii względności. Ze względu na prędkość cząstek mier-
zoną w eksperymentach, jest to zdecydowanie konieczne rozszerzenie. Niemniej jednak, rozmiar
układu jest dość mały, dlatego warto zakwestionować przybliżenie klasyczne. Szczególnie jeśli
rozważy się, jak cząstki są identyfikowane w eksperymentach. Efekty kwantowe, takie jak dyskretne
stany spinowe i rozpady z teorii pól kwantowych, muszą być uwzględnione.
Zostało już zauważone [20], że nadokreślony układ równań dla uogólnionej funkcji rozkładu
nakłada ograniczenia, które są sprzeczne z klasyczną funkcją rozkładu. Artykuł dotyczy fermionów,
ale argumentacja jest ważna także dla skalarnych cząstek i cząstek o dowolnym spinie. Nadokreślony
zbiór równań, który spełnia uogólniona funkcja rozkładu, nie jest głównym tematem żadnej pracy,
a jego wyjaśnienie w podręcznikach jest niepełne, nawet w najbardziej cytowanych opracowani-
ach dotyczących relatywistycznej teorii kinetycznej z pól kwantowych [19]. Na szczęście można to
wykazać w kilku krokach. Zaczynając od definicji (20), która może zostać uogólniona na macierz,
jeśli mamy pola wieloskładowe Ψ̂a(x), na przykład fermiony Diraca

Wab(x, p) = 2
∫

d4v

(2π)4 e
−ip·v tr

(
ρ̂ Ψ̂†

a(x+ 1
2v) Ψ̂b(x− 1

2v)
)
. (22)

Nazywając y = x± 1
2v, nie ma znaczenia, która z tych dwóch opcji, można użyć równań ruchu

∂(y) · ∂(y) Ψ̂c(y) +m2 Ψ̂c(y) = · · · (23)

aby wyprowadzić równania ewolucji dla każdej składowejWab(x, p), wyrażając operator d’Alemberta
∂(y) · ∂(y) w kategoriach pochodnych względem x i v, po pewnej algebrze i wyraźnym zapisaniu
stałych ℏ i c {

ℏ2

4

(
∂ · ∂

)
−
(
p2 −m2c2

)
± i ℏ p · ∂

}
Wab(x, p) = · · · , (24)

prawa strona równości zanika dla pól swobodnych, ale w ogólności jest to wartość oczekiwana
jakiejś kombinacji operatorów, zależna od oddziaływań.
Pojawienie się dwóch możliwych znaków w równaniu (24) oraz dwóch opcji dla wyrazu źródłowego
po prawej stronie jest dość oczywiste. Można to natychmiast zrozumieć, jeśli przypomni się, że
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zgodnie z definicją (22), macierz Wab(x, p) jest hermitowska, tzn. (Wab(x, p))† = W ∗
ba(x, p) =

Wab(x, p). Obie równości są hermitowskimi sprzężeniami nawzajem.
Suma i różnica obu równań prowadzą do dwóch bardzo różnych równań dla każdej składowej
macierzy wartościowej uogólnionej funkcji rozkładu Wab(x, p). Jest to coś na kształt ograniczenia

ℏ2
(
∂ · ∂

)
Wab(x, p) − 4

(
p2 −m2c2

)
Wab(x, p) = · · · , (25)

oraz równania kinetycznego

ℏ p · ∂ Wab(x, p) = · · · . (26)

Jeśli prawa strona równania (24) jest drugiego rzędu względem stałej Plancka O(ℏ2), pierwsze
przybliżenie równania (25) to po prostu ograniczenie na masową powłokę Wab ∝ δ(p2−m2), wtedy
pierwsze przybliżenie równania (26) to niemal relatywistyczne równanie Boltzmanna dla słabych
oddziaływań p ·∂Wab ≈ δ(p2 −m2) p ·∂ fab(x,p) = O(ℏ). Podobieństwo do relatywistycznej teorii
kinetycznej staje się teraz wyraźne. Problem w tej ekspansji w ℏ polega na tym, że sama stała ℏ
ma wymiary fizyczne. To, czy jest ona “mała” czy “duża”, zależy od skali akcji układu. Ponieważ
ℏc ≃ 200 MeV·fm, w eksperymentach z ciężkimi jonami istnieje dużo miejsca, by mieć skale akcji o
porównywalnych rozmiarach lub mniejsze. Momenty rzędu kilku setek MeV (większość układów),
ale medium zmieniające się znacząco na małej ułamkowej części femtometra. W [20] wskazano
zasadniczo, że nawet w granicy masowej powłoki Wab ∝ δ(p2 − m2) operator d’Alemberta w
równaniu ograniczenia (25) dla swobodnego pola Diraca nadal nakłada pewne istotne ograniczenia
na ruch. Uwzględniając oscylacje falowe między dodatnimi i ujemnymi wartościami uogólnionej
funkcji rozkładu, co z kolei jest niekompatybilne z obrazem kinetycznym związanym z klasycznymi
gęstościami prawdopodobieństwa.
Użycie (22) i (20) jest bardziej ogólne, niż się wydaje, pomimo zastosowania w literaturze różnych
definicji. Na przykład, w przypadku fermionów powszechnie stosuje się inną definicję, używając
sprzężonego pola Diraca Ψ̄ zamiast hermitowskiego ψ†, jednak różnią się one tylko przez mnożenie
przez macierz gamma. W podobny sposób, fermiony podążają za równaniem Diraca (ze źródłem).
Z powodu algebry Clifforda, wystarczy ponownie zastosować operator różniczkowy Diraca do obu
stron równania, aby uzyskać równanie typu Klein-Gordona, jak w (23). To nie oznacza, że nie
ma dalszych szczegółów do omówienia. Na przykład, w teoriach pola gauge stosuje się zazwyczaj
kowariantną wersję funkcji dwóch punktów (na przykład [21]). W każdym razie, argumenty nadal
obowiązują, a te same wyniki można wyprowadzić niezależnie od różnych notacji i definicji.
Aby rozwiązać problem ewolucji kwantowej w ekstremalnych warunkach zderzeń ciężkich jonów,
rozważono gaz kwantowy o swobodnym strumieniu [H7]. Mówiąc inaczej, jest to pole skalarne
nieoddziałujące, które w granicy kinetycznej odpowiada gazowi idealnemu o swobodnym stru-
mieniu. Skorzystano z operatora gęstości w stanie nierównowagi (NEDO) dla macierzy gęstości
układu. W szczególności, układ lokalnie zrównoważony w czasie τ0 o stałej początkowej tem-
peraturze T0. Symetria to popularna symetria Bjorkena stosowana w modelach zderzeń ciężkich
jonów jako pierwsze przyblienie. Mianowicie, niezmienność wzdłuż osi długości, jednorodność
w płaszczyźnie poprzecznej i niezmienność względem odbicia osiowego. Dzięki uproszczeniom
wynikającym z ograniczeń symetrii, możliwe jest dokładne rozwiązanie dla składowych Tµν ,
wartości oczekiwanej odpowiadającego operatora kwantowego. Rozwiązanie można zapisać za po-
mocą funkcji Hankela. W szczególności, początkowe wartości Tµν(τ0) są dokładnie takie same, jak
w granicy kinetycznej. Symetria okazuje się wystarczająca, by zachować asymptotyczne skalowanie
dla dużego czasu τ → ∞. Pomimo zaniku w τ o tych samych potęgach w czasie własnym, jak
w przypadkach klasycznych, wartości asymptotyczne nie są wartościami klasycznymi. Stosunek
dokładny do wartości składowych do ich klasycznych odpowiedników nasyca się w granicy τ → ∞
do liczby, która nie równa się 1. W zależności od skali układu, innymi słowy, początkowej tem-
peratury, masy pola i początkowego czasu, poprawki mogą być duże.
W pracy H8 znalazłem ogólne rozwiązania dla przestrzeni 1 + 1-wymiarowych równań dla W w
przypadku swobodnego pola skalarnego. Oznacza to, że symetria obrotów i translacji w płaszczyźnie
poprzecznej jest zachowana, ale nie ma wymogu niezmienności wzdłuż osi długości ani niezmien-
ności względem odbicia osiowego. Symetria Bjorkena w wymiarze 0+1 jest przypadkiem szczegól-
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nym. Przeanalizowałem ogólne rozwiązania, niezależnie od tego, czy układ jest w lokalnej czy
globalnej równowadze. W ramach uogólnionych funkcji (dystrybucji) można to zapisać jako

W (t, z; p0, pT , p
z) =δ(p0)δ(pz)

∫
dξ

[
e

−i
(

t
√

4m2
T

+ξ2−z ξ
)
A(ξ; pT ) + e

i
(

t
√

4m2
T

+ξ2−z ξ
)
A∗(ξ; pT )

]
+ cos

(
2w

√
p2 −m2

(p0)2 − (pz)2

)
Feven(p0, pT , p

z)

+

√
(p0)2 − (pz)2

p2 −m2 sin
(

2w

√
p2 −m2

(p0)2 − (pz)2

)
Fodd(p0, pT , p

z).

(27)

Notacja pT =
√

(px)2 + (py)2, m2
T = m2 + p2, w = z, p0 − t, pz jest dość standardowa. Parametr

ξ jest parametrem całkowym. Funkcje A, Feven, Fodd są dotychczas nieograniczone. W sensie,
że każda funkcja spełnia wersję 1 + 1 wymiarową równania (24). Ważne jest, aby zauważyć,
że pµ w (27) nie jest na powłoce masy (nie jest ”on-shell”). W rzeczywistości, jak wyjaśniono w
pracy [H8], tylko trywialne rozwiązanie (bez zależności od czasoprzestrzeni) może być na powłoce
masy p2 = m2. Pierwszy człon jest osobliwy ∝ δ(p0)δ(pz) i, jeśli w ogóle występuje, nie może
mieć granicy kinetycznej. Pozostałe dwa człony mogą mieć odpowiednią granicę kinetyczną. Po
uwypukleniu skali działania stanu układu A i oznaczeniu ε = ℏ/A, możliwe jest sklasyfikowanie
rozwiązań mających granicę kinetyczną. Mianowicie, w granicy ε → 0, (2πℏ)3W → δ(p2 −m2)f
z dodatnią funkcją f ⩾ 0. Szczegóły znajdują się w publikacji [H8], a wyniki są takie, że Feven
i Fodd są odpowiednio proporcjonalne do parzystej (a więc rzeczywistej) części transformaty
Fouriera odpowiadającej funkcji rozkładu kinetycznego f oraz nieparzystej (urojonej) części.
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Figure 5: Skalowana funkcja całkowana z PL z [H8]

Dokładne rozwiązanie (27)
zachowuje swoje oscylacje
dla wszystkich wartości ε, i
nigdy nie przyjmuje postaci
odpowiadającej klasycznemu
rozwiązaniu. Jednak ma-
jąc ogólną postać dokład-
nych rozwiązań, możliwe
jest zweryfikowanie intu-
icyjnego założenia, że po
całkowaniu względem pewnego
parametru szybkie oscy-
lacje wokół średniej mogą
się zrównoważyć i dać coś,
co będzie bliskie klasy-
cznemu oczekiwaniu kine-
tycznemu.

W szczególności, w [H8],
porównałem dokładne (kwan-
towe) wyniki z ich kinety-

cznym (klasycznym) limitem przy różnych wartościach ε. Ograniczająca funkcja rozkładu kinety-
cznego ma kształt Gaussa (a nie wykładniczy, jak w przypadku lokalnej równowagi w limicie Boltz-
manna), izotropowa w chwili τ0 z efektywną temperaturą T0. Skala działania to T0τ0. Wybierając
różne wartości tych parametrów, można sprawić, by skala układu była dowolnie duża lub mała
w jednostkach ℏ. Na rysunku 5 wykreślono skalowaną funkcje całkowaną z ciśnienie wzdłużnego
PL względem przeskalowanego w. To znaczy, funkcja całkowana z PL, po całkowaniu względem
wszystkich zmiennych oprócz w, podzielony przez nieistotny stały prefaktor (który nie zależy od
w), względem w̃ = w/A.

Czarna linia ciągła, limit ε → 0 to zarówno małe ε ≪ 1, które jest nieodróżnialne od klasycznego
rozkładu. Linia dla ε = 0.5 znajduje się prawie na samej górze wyników klasycznych. Jednakże, w
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długim ogonie występują fluktuacje powyżej i poniżej zera. Mimo że są to niewielkie odchylenia od
zera, dodatnia część znacząco przewyższa część ujemną. Jak pokazano na rysunku 6, wciąż daje to
względną korektę rzędu ≈ 10% do ciśnienia wzdłużnego. Nic dziwnego, że inne przypadki, które już
pokazują znaczące odchylenia w obrębie całkownika, dają znacznie większe korekty, przekraczające
100%. Oznacza to, że układ jest dominowany przez korekcje kwantowe, przynajmniej jeśli chodzi o
PL. Podobne wyniki, choć nieco mniejsze pod względem wielkości, mają miejsce także dla ciśnienia
poprzecznego oraz odpowiedniej gęstości energii, które otrzymują korekty rzędu kilkudziesięciu pro-
cent.
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Figure 6: Stosunek PL/Pclass.
L z [H8].

Podsumowując wyniki, z [H7]
i z [H8], poprawki kwantowe
zależą od efektywnego działa-
nia układu, a wolne pole kwan-
towe ma tę samą ewolucję
stopni swobody hydrodynam-
icznych, co wolny gaz idealny
w limitach dużych skal działa-
nia (w porównaniu do ℏ). Syme-
tria Bjorkena może być wystar-
czająca do zapewnienia dłu-
gozasięgowych skal czasowych
w odniesieniu do odwrotnych
potęg τ , ale nie ich stosunków.
Istnieje wyraźna różnica iloś-
ciowa, jeśli nie jakościowa, w
długim czasie, która jest nadal
widoczna dla małych skal działania, w standardowych jednostkach i przy użyciu stałej Boltzmanna
kB, gdzie kBT0τ0 < ℏc.
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Figure 7: Anizotropia Ciśnienia, z [H9].

Ważną rzeczą, którą
należy zauważyć w tym
momencie, jest to, że duża
liczba samoodziaływań w
ewolucji stopni swobody
hydrodynamicznych w (13),
wynika ze struktury samego
równania Boltzmanna w
wersji relatywistycznej. Bardzo
podobna struktura, przed
jakąkolwiek aproksymacją,
występuje w kwantowym
prekursorze funkcji rozkładu (26).
Nie jest możliwe bezpośred-
nie użycie (8) lub, bardziej
precyzyjnie, jego wersji poza
powłoką. Czynniki (p · u)
w mianowniku powodują
niecałkowalne bieguny. Jed-
nakże, łagodniejsza wersja
tego problemu pojawia się

w przypadku Boltzmanna-Vlasova opracowanego w [H6]. Zostało to rozwiązane za pomocą
zsumowanych momentów (21). Dodatkową komplikacją jest to, że ta generacja momentów jest
niewłaściwa poza powłoką. Najbardziej bezpośredni sposób, by to zauważyć, to spostrzeżenie, że
(p · u) ̸=

√
(p · u)2 = |p · u|, ponieważ prawa strona nigdy nie jest ujemna, podczas gdy lewa

strona może być dla czasoprzestrzennych p2 < 0. Zastąpienie (p · u) jego wartością bezwzględną
|p·u| w definicji (21) nie jest zbyt pomocne. Równanie dynamiczne wówczas wygeneruje sprzężenie z
nową generacją momentów, mającą deltą Diraca δ(p·u) w całkowaniu, wynikającą z wyprowadzenia
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wartości bezwzględnej, w sensie dystrybucji temperowanych. Ich dokładna ewolucja, z kolei, będzie
sprzężona z nowymi momentami z δ′, i tak dalej. Można uniknąć tego wszystkiego dzięki rozważnej
redefinicji zsumowanych momentów. W pracy [H9] użyłem zestawów momentów

ϕµ1···µs
n (ζ, x) = ∆µ1

ν1
· · · ∆µs

νs

∫
d4p (p · u)n e−ζ(p·u)2

pν1 · · · pνs W (x, p), (28)

korzystając z całek i pochodnych względem zewnętrznego parametru ζ, można użyć tylko dwóch
generacji, powiedzmy n = 1 i n = 2, aby zapisać stopnie swobody hydrodynamiczne oraz momenty,
z którymi są one sprzężone. W szczególności, możliwe jest zapisanie uogólnienia (13)

Ṗ⟨µ⟩⟨ν⟩ = 2
(

P + Π
)
σµν + 5

3θ
(

P + Π
)

∆µν − 5
3θ π

µν + 2π(µ
α σν)α − 2π(µ

α ων)α

−
∫ ∞

0
dζ
[
C⟨µ⟩⟨ν⟩

1 + ∇αϕ
α⟨µ⟩⟨ν⟩
1 − u̇α (2ϕαµν

1 − 2ζϕαµν
3 ) − ∇αuβ

(
ϕαβµν

0 − 2ζϕαβµν
2

)]
.

(29)

Oprócz dodatkowej komplikacji związanej z całką względem ζ oraz momentami zależnymi od ζ
po prawej stronie, jest to bardzo podobne do (13). Argumenty użyte w przypadku klasycznym
dla metody momentów mogą zostać uogólnione na przypadek kwantowy. Momenty C postępują
zgodnie z przepisem dla momentów ϕ, stąd zależność od ζ. Najważniejsza różnica między “naive”
uogólnioną wersją (13) a jej uogólnioną wersją (29), polega na tym, że jest ona dobrze określona,
niezależnie od szczegółów off-shell W (x, p).

W [H9] przedstawiono prosty przykład stanu dla wolnego pola skalarnego, w którym kwantowa
wersja momentu fαβµν

−2 (z klasyczną definicją, ale z off-shell W zamiast funkcji rozkładu f) nie ist-
nieje. Należy dodać, że w limicie kinetycznym (on-shell pozytywne W ) całka względem parametru
ζ może zostać wykonana dokładnie i ponownie uzyskujemy (13).

Jeśli uogólniony kernel kolizyjny jest traktowany w Przybliżeniu Czasu Relaksacji (RTA), skład-
nik Cµν

1 może być dokładnie scałkowany względem ζ. Co ciekawe, jeśli sytuacja jest wystarczająco
łagodna, jak w przypadku rozszerzenia Bjorkena z RTA, możliwe jest zgrupowanie momentów
nie-hydrodynamicznych i wykonanie całkowania względem ζ. Korzystając z liniowego operatora L̂

L̂[φ(ζ)] = 2ζ φ(ζ) −
∫ ∞

ζ

dζ ′ φ(ζ ′), (30)

Możliwe jest skupienie niezerowych składników momentów nie-hydrodynamicznych po prawej
stronie równania (29) i bezpośrednie wykonanie całki względem parametru ζ.

exact

hydro

NLO

NNLO

NNNLO

(>10)

0.5 1 5 10

-0.05

0

0.05

0.10

τ[fm/c]

(ℰ
-
2

T
-

L
)/
ℰ

Figure 8: Anomalia Śladu, z [H9].

Zastosowanie operatora wielokrot-
nie do dokładnych równań ewolucji
momentów nie-hydrodynamicznych
oraz dodatkowych momentów,
do których się one sprzęgają,
pozwala wykonać dokładnie
całkowanie po ζ także w wyższych
rzędach. Usunięcie dodatkowego
parametru ζ z ogólnej ekspan-
sji hydrodynamicznej umożli-
wia sprawdzenie, czy argumenty
użyte w limicie kinetycznym
nadal obowiązują poza powłoce
masa. W [H9], rzeczywiście,
uogólniłem metodę numeryczną,
która jest powszechnie stosowana
do uzyskiwania dokładnych rozwiązań
równania Boltzmanna w kon-
tekścieW off-shell i przeprowadz-
iłem takie testy. Dla dwóch
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rozważanych warunków początkowych, mimo dużego względnego przybliżenia momentów nie-
hydrodynamicznych, skladnik sprzężenia własnego dominuje w przypadkuE , PT i PL. Hydro-
dynamika, jak się spodziewano, jest stosunkowo dobrym przybliżeniem dla tych wielkości. Z
drugiej strony, w kombinacji E − 2PT − PL, bezpośredni wkład stopni swobody hydrodynam-
icznych upraszcza się, co sprawia, że hydrodynamika jest złym przybliżeniem i wymaga znacznie
wyższego rzędu w uogólnionej ekspansji, aby zbiec do wyników modelu mikroskalowego. Oba
warunki początkowe są bardzo odległe od limitu kinetycznego i w rzeczywistości momenty nie-
hydrodynamiczne w (29) są po prostu niemożliwe na brzegu. Aby to zobrazować, na rysunkach 7
i 8 znajdują się wykresy z [H9], odpowiednio dla stosunku ciśnienia podłużnego do poprzecznego
oraz anomalii śladu skalowanej do gęstości energii, dla izotropowych warunków początkowych.

2.4 Podsumowanie

Podsumowując, artykuły zawarte w osiągnięciu naukowym poświęcone są hydrodynamice w kon-
tekście zderzeń jonów ciężkich. Celem jest zrozumienie, czy i dlaczego hydrodynamika może być
stosowana, pomimo dużych gradientów i nieidealnych składników.
W publikacjach [H1-H4] głównym tematem jest hydrodynamika anizotropowa. Początkowa idea
polega na zastosowaniu uogólnionej wersji równowagi lokalnej. W ten sposób zachowuje się
limit swobodnego rozpraszania (zanikające oddziaływania), odzyskuje się hydrodynamikę lepką
drugiego rzędu, liniaryzując odchylenia od równowagi (w pobliżu równowagi), a także traktuje
się składniki nienaidealne w sposób nieliniowy dla dużych odchyleń od równowagi. Anizotropowy
ansatz dostarcza dodatkowych stopni swobody, dlatego w ogólności potrzebne są dodatkowe rów-
nania dynamiczne. W [H1] zaproponowaliśmy ich wyprowadzenie z drugiego momentu równa-
nia Boltzmanna. Oprócz poprawy zgodności z wynikami kinetycznymi, wprowadzona metoda
geometryczna może zostać łatwiej rozszerzona. To, co zrobiłem w [H2], to uogólnienie równań
uwzględniających wszystkie składniki nieidealne, niezależnie od symetrii rozwoju. Z porównań nu-
merycznych [H3] wynika, że ciśnienie objętościowe jest dość trudne do dokładnego odwzorowania
w hydrodynamice anizotropowej. Z drugiej strony, nowsze podejście do hydrodynamiki lepkiej
drugiego rzędu jest zadziwiająco dobre. Założenie dotyczące formy funkcji rozkładu wydaje się
mniej istotne niż metoda wyboru równań ruchu. W rzeczywistości, w [H4] uogólniłem metodę
momentów do anizotropowego tła. To zachowuje samoodziaływania stopni swobody hydrodynam-
icznych w ich ewolucji, w tym te nienaidealne. Pozostawiając wszystkie przybliżenia w traktowaniu
pozostałych stopni swobody nienaidealnych, które pojawiają się w dokładnej ewolucji składników
nienaidealnych. Otrzymana receptura jest znacznie dokładniejsza niż wcześniejsze wersje i lep-
sza niż hydrodynamika lepką drugiego rzędu. Publikacja [H5] dotyczy hydrodynamiki z real-
istycznym równaniem stanu. Kwazicząstki sprzężone z terminem “bag” mogą dopasować każde
równanie stanu w równowadze. Uogólniliśmy metodę momentów do wyciągania współczynników
transportu w hydrodynamice lepkiej drugiego rzędu. Jako że brakowało dokładnego rozwiązania,
porównaliśmy z hydrodynamiką anizotropową z realistycznym równaniem stanu, potwierdzając
tendencję obserwowaną w [H3]: wyniki hydrodynamiki anizotropowej są zbliżone do hydrody-
namiki lepkiej, o ile ta ostatnia jest uzyskiwana za pomocą metody momentów.
Wymóg asymptotycznie słabych oddziaływań w kinetycznej teorii względnościowej stoi w sprzeczności
z silnym oddziaływaniem, które jest potrzebne, aby uzyskać mały stosunek lepkości ścinającej do
entropii, co z kolei jest niezbędne do dopasowania danych eksperymentalnych. Publikacja [H6]
stanowi pierwszy krok do uogólnienia metody momentów do tła, które nie jest czysto kinety-
czną teorią względnościową. Rozważaliśmy przypadek równania Boltzmanna-Vlasova, w szczegól-
ności porównaliśmy wyniki uzyskane za pomocą uogólnionej metody momentów z dokładnym
rozwiązaniem (0 + 1)-wymiarowego rozwoju plazmy, która oddziałuje z polem elektrycznym.
Stwierdziliśmy, że praktyczne jest użycie zbioru zresumowanych momentów zamiast regularnych,
aby uniknąć źle określonych wyrazów przy wyższych rzędach oraz móc ustalić początkową pochodną,
oprócz warunków początkowych, dla każdej zmiennej dynamicznej w miarę jak rozwój idzie w
wyższe rzędy. Ta modyfikacja rozwoju okazała się bardzo użyteczna do dalszego uogólnienia
metody momentów. Relatywistyczne równanie Boltzmanna można traktować jako rozwinięcie w
małym ℏ równań, które spełnia jego kwantowy odpowiednik w teorii pól kwantowych. Ponieważ
ℏ ≈ 200 MeV·fm/c, nie ma szczególnego powodu, aby uznać korekcje kwantowe za małe w
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zderzeniach ciężkich jonów, szczególnie w początkowych etapach: setki MeV/c dla typowego pędu,
ale gęstości, które muszą się znacząco zmieniać na odległościach mniejszych niż fm z powodu
ograniczonego rozmiaru.
Publikacje [H7-H8] są poświęcone dokładnym rozwiązaniom, poza równowagą, dla wolnego pola
skalarnego. Zastosowane metody są różne, ale oba badania pokazują, że korekcje kwantowe są
duże.
Publikacja [H9] jest sformalizowaniem intuicyjnego stwierdzenia. Metoda momentów opiera się
na strukturze relatywistycznego równania Boltzmanna, ta struktura jest obecna w kwantowym
prekursorze funkcji rozkładu przed jakąkolwiek aproksymacją, która prowadzi do relatywisty-
cznej teorii kinetycznej: powinno być więc możliwe rozszerzenie tej metody na pełny przypadek
kwantowy, poza równowagą. I właśnie to zrobiłem w [H9]. Konieczne jest użycie innego zestawu
momentów, a nie naiwnych rozszerzeń tych stosowanych w teorii kinetycznej. Jest to podobne do
podejścia zastosowanego w [H6], ale przypadek poza równowagą jest na tyle różny, że wymaga in-
nego zestawu zresumowanych momentów. Wynikające z tego rozszerzenie jest dobrze zdefiniowane
na wszystkich rzędach, a rząd wiodący to druga-rzędowa hydrodynamika lepkości.

3. Inne Osiągnięcia Naukowe
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sical source is not trivial after all: From vacuum decay to scattering, Phys.Rev.D 110 (2024) 11,
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3.2 Wnioski Końcowe

Moja praca magisterska dotyczyła badania cieczy wirujących w ramach skutecznych Lagrangianów.
Podczas moich studiów doktoranckich we Florencji, badałem ciecze wirujące w teoriach pola
kwantowego, a w szczególności rolę tensora spinowego i wybór “pseudogauge”. Moja rozprawa
doktorska opierała się głównie na publikacjach [P1-P3]. Publikacja [P5] jest związana z pracą,
którą wykonywałem podczas studiów doktoranckich, mianowicie rozszerzeniem termodynamiki i
lokalnej równowagi na systemy kwantowe, przy użyciu podejścia Zubareva. Po uzyskaniu dok-
toratu w 2013 roku rozpocząłem pierwszą pracę na stanowisku doktora-stażisty na Uniwersyte-
cie Jana Kochanowskiego w Kielcach. Moja główna dziedzina badań przesunęła się w kierunku
hydrodynamiki anizotropowej [H1, P4, H2, H3, H4, P6, P7, H5]. Między końcem pierwszego
post-doktora a drugim na Uniwersytecie Stanowym Ohio, badałem oczekiwane właściwości cieczy
wirujących z ich asymptotycznymi symetriami w skutecznych działaniach [P8, P9]. Kontyn-
uowałem pracę nad generalizacją rozszerzenia hydrodynamicznego [H6]. W 2017 roku przeniosłem
się na Uniwersytet Goethego w Niemczech. Stworzyłem monografię z profesorem Florkowskim na
temat polaryzacji cząstek w wolnych polach w formalizmie Wignera [P10], oraz jego związku z
makroskalowymi tensorami energii-pędu i spinowymi.
W ramach współpracy z moim byłym promotorem i jego doktorantem, obliczyliśmy dokładne
wartości tensora energii-pędu poza równowagą [H7], poddając go ekspansji w wymiarze 0 + 1
(symetria Bjorkena).
W międzyczasie dołączyłem do współpracy z eksperymentalistami i teoretykami, aby badać funda-
mentalne aspekty materii tworzonej w zderzeniach jonów ciężkich oraz jej możliwe konsekwencje
w obserwacjach. Ten długoterminowy projekt trwa nadal. Głównym celem była termalizacja,
struktura przyczynowa oraz możliwe łamanie klasycznych oczekiwań z powodu efektów kwan-
towych [P11, P12, P13, P16].
Pracuję nad tymi tematami podczas mojego obecnego zatrudnienia na Uniwersytecie Jana Kochanowskiego.
Kontynuuję badania nad fundamentalnymi aspektami hydrodynamiki oraz jej zastosowaniami
fenomenologicznymi [H8, H9, P15]. Jako współopiekun pracy doktorskiej Arthura Verejkena
rozpocząłem współpracę z grupą profesora Giacosy, publikując pracę na temat dokładnych rozwiązań
dla kwantowego pola skalarnego wchodzącego w interakcję z klasycznym źródłem [P14].
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